Формула Борда — Карно

25.08.2022

В гидродинамике формула (теорема) Борда — Карно — это эмпирическая формула, описывающая потери энергии (или напора) жидкости, происходящие при местном расширении потока. Эта формула, в отличие от уравнения Бернулли для идеальной жидкости, в котором рассматривается поток с неизменным значением полного напора, позволяет рассчитать потери на местном гидравлическом сопротивлении. Эта формула названа в честь Жана-Шарля де Борда и Лазара Карно.

Формула Борда-Карно применима как для открытого потока в канале (безнапорного), так и для потока в трубе (напорного).

Формулировка

Формула Борда-Карно имеет вид:

Δ E = ξ 1 2 ρ ( V 1 − V 2 ) 2 , {displaystyle Delta E,=,xi ,{scriptstyle {frac {1}{2}}}, ho ,left(V_{1},-,V_{2} ight)^{2},}

где

ΔE — потеря энергии жидкостью; ξ — эмпирический безразмерный коэффициент потерь, принимающий значения в интервале от нуля до единицы, 0 ≤ ξ ≤ 1; ρ — плотность жидкости; V1 и V2 — средняя скорость потока, соответственно, перед и за местным расширением потока.

В случае внезапного расширения потока коэффициент потерь равен единице. В других случаях коэффициент потерь следует определять, чаще всего, с использованием эмпирических формул (на основании данных, полученных экспериментальным путём). Формула Борда-Карно справедлива для случая уменьшения скорости, V1 >V2, в другом случае потери ΔE равно нулю, поскольку увеличение скорости V2 по сравнению со скоростью V1 означало бы совершение внешними силами работы над потоком жидкости, и тогда говорить о потерях на местном сопротивлении не приходится.

Коэффициент потерь может быть уменьшен или увеличен ξ путём изменения формы потока. Например, применяя диффузор вместо внезапного расширения, можно уменьшить коэффициент потерь.



Имя:*
E-Mail:
Комментарий: